Functional Programming in Sublinear Space
نویسندگان
چکیده
We consider the problem of functional programming with data in external memory, in particular as it appears in sublinear space computation. Writing programs with sublinear space usage often requires one to use special implementation techniques for otherwise easy tasks, e.g. one cannot compose functions directly for lack of space for the intermediate result, but must instead compute and recompute small parts of the intermediate result on demand. In this paper, we study how the implementation of such techniques can be supported by functional programming languages. Our approach is based on modeling computation by interaction using the Int construction of Joyal, Street & Verity. We derive functional programming constructs from the structure obtained by applying the Int construction to a term model of a given functional language. The thus derived functional language is formulated by means of a type system inspired by Baillot & Terui’s Dual Light Affine Logic. We assess its expressiveness by showing that it captures LOGSPACE.
منابع مشابه
Computation by interaction for space-bounded functional programming
We consider the problem of supporting sublinear space programming in a functional programming language. Writing programs with sublinear space usage often requires one to use special implementation techniques for otherwise easy tasks, e.g. one cannot compose functions directly for lack of space for the intermediate result, but must instead compute and recompute small parts of the intermediate re...
متن کاملSolving Geometric Problems in Space-Conscious Models
When dealing with massive data sets, standard algorithms may easily “run out of memory”. In this thesis, we design efficient algorithms in space-conscious models. In particular, in-place algorithms, multi-pass algorithms, read-only algorithms, and stream-sort algorithms are studied, and the focus is on fundamental geometric problems, such as 2D convex hulls, 3D convex hulls, Voronoi diagrams an...
متن کاملThe Farkas Lemma Revisited
The Farkas Lemma is extended to simultaneous linear operator and polyhedral sublinear operator inequalities by Boolean valued analysis. Introduction The Farkas Lemma, also known as the Farkas–Minkowski Lemma, plays a key role in linear programming and the relevant areas of optimization (cp. [1]). Some rather simple proof of the lemma is given in [2]. Using the technique of Boolean valued analys...
متن کاملCompressed Dynamic Tries with Applications to LZ-Compression in Sublinear Time and Space
The dynamic trie is a fundamental data structure which finds applications in many areas. This paper proposes a compressed version of the dynamic trie data structure. Our data-structure is not only space efficient, it also allows pattern searching in o(|P |) time and leaf insertion/deletion in o(log n) time, where |P | is the length of the pattern and n is the size of the trie. To demonstrate th...
متن کاملOn the Relation of Interaction Semantics to Continuations and Defunctionalization
In game semantics and related approaches to programming language semantics, programs are modelled by interaction dialogues. Such models have recently been used in the design of new compilation methods, e.g. for hardware synthesis or for programming with sublinear space. This paper relates such semantically motivated non-standard compilation methods to more standard techniques in the compilation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010